10.1 Notes: Solving Quadratics by Square Rooting

Objectives:

- Solve quadratic equations by square rooting.
- Determine when a quadratic equation has no solution.

| Quadratic
 Expression | |
| :--- | :--- | :--- | :--- |
| Quadratic
 Equation | |
| | |
| Quadratic
 Function | |

Examples 1-3: Find the solution(s), if any, of the quadratic functions that are graphed below.
1)

2)

3)

Alternate Terms for " \boldsymbol{x}-intercepts"		
		Note: When a variable or or ()2 is isolated, it cannotequal a negative number.
Solving a Quadratic Equation by Square Rooting		If it does, then there is NO solution.

Examples \#1-6: Solve each equation for the variable by square rooting.

1) $z^{2}-5=4$
2) $r^{2}+7=4$
3) $4 x^{2}+3=3$

You Try \#4-6!
4) $-3 x^{2}+4=-23$
5) $4 t^{2}+17=17$
6) $p^{2}+8=0$

Examples 7-8: Solve. Simplify radical answers. You Try \#8!
7) $5 b^{2}-3=97$
8) $-3 a^{2}+4=-32$

Examples 9-14: Solve for the variable. Simplify any radical answers.
9) $(x-2)^{2}=25$
10) $(x+1)^{2}-3=3$
11) $5(x+1)^{2}-3=77$

You Try \#12-14!
12) $(x+4)^{2}=36$
13) $(x-5)^{2}+1=11$
14) $4(a-3)^{2}-8=0$

Examples 15 - 18: Solve for the variable. Simplify any radical answers.
15) $-3(x-2)^{2}+5=-31$
16) $5(x+4)^{2}+20=10$

You Try \#17-18!
17) $-4(x+2)^{2}+8=28$
18) $2(x-1)^{2}-3=13$

10.2 Notes: Solving Quadratics by Factoring, Day 1

Objectives:

- Use the Zero-Product Property to solve equations.
- Solve quadratic equations by factoring.

Warm-Up: With your group or a partner to factor the expressions below. If needed, use your Ch 8 Notes.
A) $x^{2}+5 x+4$
B) $a^{2}-9$
C) $6 y^{2}-9 y$

Exploration: Work with a partner or your group.

- Given that $a b=0$. What must be true about a and/or b ?
- Given that $(x-2)(x+5)=0$. What values of x make this equation true? Why?

Zero-Product Property	Let a and b be real numbers. If $a b=0$, then

For \#1-4: Solve each equation for \boldsymbol{x}.

1) $x(x-6)=0$
2) $-2.5 x(x+1)=0$
3) $3(x-2)(5 x+2)=0$

You Try \#4!
4) $4 x(2 x-3)(x-100)=0$

Solving
Quadratic
Equations by
Factoring

Reminder: What are other names for the "solutions" of a quadratic equation?

Examples 5-10: Solve each equation for the variable by factoring.
5) $x^{2}+3 x-10=0$
6) $0=h^{2}-25$
7) $a^{2}-10 a+25=0$

You try \#8-10!
8) $x^{2}-49=0$
9) $b^{2}+2 b+1=0$
10) $0=x^{2}+4 x-12$

Examples 11 - 13: Solve each equation for the variable by factoring. You Try \#13!
11) $4 x^{2}+8 x=0$
12) $-9 x^{2}+6 x=0$
13) $15 x^{2}+3 x=0$

Examples 14 - 19: Solve each equation for the variable by factoring. Reminder: look for the GCF first. Not all problems will have a GCF, but some will.
14) $2 x^{3}-14 x^{2}-36 x=0$
15) $-10 x^{2}+90=0$
16) $6 x^{2}-13 x-5=0$
17) $5 x^{2}-20=0$
18) $-3 x^{3}-18 x^{2}-24 x=0$
19) $10 x^{2}-3 x-1=0$
20) Consider the equation $3 x^{2}-12=0$. Solve this problem in two ways:

By factoring
By square rooting (see the 10.1 Notes)

Did you get the same answer with each method?
21) Consider the equation $x^{2}+2 x-3=0$, which can be solved by factoring. Explain why this equation could not be solved by square rooting.

10.3 Notes: Solving Quadratics by Factoring, Day 2

Objectives:

- Use the Zero-Product Property to solve equations.
- Solve quadratic equations by factoring.
- Re-write equations so that they can be solved by factoring.

Writing Equations in Equivalent Forms	To solve an equation by factoring, the equation must be set equal to \qquad . If the equation is not set equal to \qquad , then it can be written in an equivalent form.
Standard Form of a Quadratic Equation	

Examples \#1-6: Solve each equation by factoring.

1) $x^{2}=-10 x$
2) $x^{2}+40=14 x$
3) $x^{2}=-9 x-18$

You Try \#4-6!
4) $x^{2}-3 x=40$
5) $x^{2}=8 x+9$
6) $9 x^{2}=-6 x$

Examples \#7-12: Solve each equation by factoring.
7) $3 a=-a^{2}+10$
8) $3 b^{2}+18=-21 b$
9) $-2 x^{2}-15=11 x$

You Try \#10-12!
10) $x^{2}-30=x$
11) $-2 x^{2}+16 x=14$
12) $3=-2 x^{2}+5 x$

Examples \#13 - 16: Solve each equation by factoring.
13) $3 a^{2}-18 a-45=3$
14) $49=4 b^{2}$

You try \#15-16!
15) $81=25 y^{2}$
16) $-4 x^{2}+14=8 x+2$
17) Consider the equation $x^{2}-3 x+1=0$.

- Can this equation be solved by square rooting? Why or why not?
- Can this equation be solved by factoring? Why or why not?
- Use a graphing calculator or technology to graph $y=x^{2}-3 x+1$. Sketch the graph to the right.

- How many x-intercepts does this quadratic function have? \qquad So how many solutions should the equation have? \qquad
- Note: we will learn another method next class that could be used to solve this equation.

10.4 Notes: The Quadratic Formula

Objectives

- Use the Quadratic Formula to solve quadratic equations.
- Determine when a quadratic equation has no solution.

| The |
| :---: | :--- |
| Quadratic |
| Formula |

For Examples \#1-4, solve each equation for \boldsymbol{x} by using the quadratic formula. If needed, write your answers as simplified radicals.

1) $x^{2}-5 x+2=0$
2) $x^{2}+9=9 x$

You try \#3-4!
3) $x^{2}+5 x=3$
4) $x^{2}+5 x-5=0$

For Examples 5 - 8, solve each equation for \boldsymbol{x} by using the quadratic formula. If needed, write your answers as simplified radicals.
5) $5 x^{2}+3 x-9=0$
6) $5 x^{2}+3 x+2=0$

You try \#7-8!
7) $x^{2}+3=4 x$
8) $4 x^{2}-x+20=0$

For Examples 9 - 10, solve each equation for \boldsymbol{x} by using the quadratic formula. If needed, write your answers as simplified radicals.

You try!
9) $3 x^{2}-2=-10 x$
10) $2 x^{2}-6 x-5=0$

Example 11: Consider the function $y=x^{2}-5 x+2$
a) From \#1 in this lesson, you had solved $x^{2}-5 x+2=0$ for x by using the quadratic equation. Write down the answers you had gotten from this problem here:
b) Use a calculator to convert these solutions for x to decimals rounded to the nearest tenth.
c) The graph of the function $y=x^{2}-5 x+2$ is shown to the right. What did you find when you solved this equation for x ?

Example 12: Consider the function $y=5 x^{2}+3 x+2$
a) From \#6 in this lesson, you had solved $5 x^{2}+3 x+2=0$ for x by using the quadratic equation. Write down the answers you had gotten from this problem here:
b) The graph of the function $y=2 x^{2}-2 x+4$ is shown to the right. What did you find when you solved this equation for x ?

Ch 10 Study Guide: Solving Quadratics

Technique	Hints and Steps	Read about it in your notes!
Solving by Square Rooting $\begin{gathered} a x^{2}+c=\text { constant } \\ a(x-h)^{2}+k=\text { constant } \end{gathered}$	- Cancel c or k by adding or subtracting from both sides - Divide both sides by a. - Square root both sides (\pm) - If the variable is not isolated, then add or subtract h from both sides. - Reminder: $x^{2} \neq$ negative... if it does, then there is no solution.	Section 10.2
Solving by Factoring $\begin{gathered} a x^{2}+b x+c=0 \\ a x^{2}+c=0 \end{gathered}$	- Get a 0 on one side of the equation. - Factor completely. - Set each factor $=0$ and solve by using the Zero Product Property.	$\begin{aligned} & \text { Sections } 10.2 \\ & \text { and } 10.3 \end{aligned}$
Solving by the Quadratic Formula $a x^{2}+b x+c=0$	- Get a 0 on one side of the equation. - Use $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ - Reminder: $\sqrt{\text { negative }}$ means there is no solution.	Section 10.4

